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Abstract Tan spot (TS) of wheat caused by
Pyrenophora tritici-repentis (Ptr) is an important disease
worldwide. Premixes of quinone outside inhibitors (QoI)
and demethylation inhibitors are themost frequently used
fungicides for TS control in Argentina. Recently, QoI
resistance was reported in Ptr populations in Argentina,
where the prevalence and intensity of this disease has
increased steadily over the past decades. Therefore, de-
velopment of new tools and active ingredients (a.i.) for
the management of this pathosystem are needed.
Fenpicoxamid is a new fungicide that belongs to the
quinone inside inhibitors. This a.i. shows no cross-
resistance and strong efficacy against Zymoseptoria
tritici strains resistant to other fungicide classes. Here
we evaluated a total of 50 QoI-resistant Ptr isolates from
Argentina for their sensitivity to fenpicoxamid. Different
concentrations were tested in both in vitro (0, 0.01, 0.025,
0.05, 0.075, 0.1 and 1 μg/ml) and in vivo (0, 5, 10 and
20 μg/ml) bioassays. Fenpicoxamid strongly inhibited
in vitro spore germination of all tested isolates (EC50

values ranged from 0.004 to 0.067 μg/ml). In greenhouse
tests, fenpicoxamid significantly decreased TS leaf inci-
dence at 10 ppm and the average spots per leaf at 20 ppm.
For the first time, we report the high fungitoxicity and
lack of cross-resistance of fenpicoxamid against QoI-
resistant Ptr isolates. This is a promising new a.i. for
controlling TS of wheat.
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Introduction

Tan spot (TS), caused by the fungus Pyrenophora tritici-
repentis (Died.) Drechsler 1923 (Ptr), is a serious foliar
disease of wheat not only in Argentina but also in other
parts of the world (Carmona et al., 2006; Ciuffetti et al.,
2014; De Wolf et al., 1998; Gamba et al., 2012;
Kremneva et al., 2021; Moffat & Santana, 2018;
Momeni et al., 2014; Oliver et al., 2008). TS causes
chlorosis and tan-colored necrotic lesions on leaves, de-
creasing photosynthetic surface area and consequently
reducing the amount of resources available for grain yield
formation (number and weight of grains) (Rees et al.,
1982). Considerable yield losses (up to 50% - 70%) have
been documented due to the disease when susceptible
wheat cultivars are planted (Kohli & Ackermann, 1992;
Rees & Platz, 1983). Thus, TS is considered a major
constraint to wheat productivity (Wegulo, 2011). The
intensity of the disease will depend on the combination
of various factors: the susceptibility of the wheat geno-
type planted, the pathogenicity / virulence of the predom-
inant races of the pathogen in the planted area, the
amount / density of initial inoculum available and envi-
ronmental conditions throughout the growing season.
Although numerous alternative hosts have been reported
for Ptr (Ali & Francl, 2003; de Wolf et al., 1998), the
most important sources of inoculum in agricultural
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systems are infested stubble from previous growing sea-
sons and infected seeds (Carmona et al., 2006).

When compared to other foliar diseases of wheat, TS
is believed to be a recently expanding disease (Friesen
et al., 2006). The first description of the typical symp-
toms caused by Ptr dates from the year 1941 (Barrus,
1942). Subsequently, TS started to gain importance
gradually since the 1960s / 1970s until today, reaching
a prominent place among wheat diseases worldwide
(Oliver & Solomon, 2008). In Argentina, TS is among
the three most important foliar diseases of wheat, with a
continuously increasing intensity and prevalence. This
constant increase may be due to at least four factors that
have occurred concomitantly during the last 20 years: 1)
the expansion of wheat cultivation under no-till and
monoculture, which ensures the presence of sufficient
inoculum in the stubble from a growing season to the
following; 2) the spread of the pathogen over short and
long distances through infected seeds (Carmona et al.,
2006); 3) the difficulty in obtaining TS-resistant wheat
cultivars to stop the spread of the disease in the field
(Faris et al., 2013; Jecke et al., 2014), and 4) the appear-
ance of quinone outside inhibitor (QoI)-resistant Ptr
strains (Sautua & Carmona, 2021).

In Argentina, few TS-tolerant wheat varieties are
currently commercially available (Alberione et al.,
2021). Although crop rotation and the use of healthy
seed (or efficiently treated with fungicide) can have a
significant effect in reducing TS intensity (Carmona
et al., 2006), currently, the use of foliar fungicides is
one of the most frequently used tools for disease man-
agement. However, the frequent increase in the emer-
gence and spread of new fungicide-resistant Ptr strains
endangers not only the effective life of fungicide active
ingredients (a.i.), but also the sustainability of wheat
production. In general, the genetic variability and adapt-
ability of a phytopathogen are very important aspects to
consider when evaluating the success of controlling the
disease it causes in a crop. Ptr produces three host-
selective proteinaceous toxins and at least eight races
of the pathogen are known to occur, which result in
complex and constantly evolving pathogen populations
(Ciuffetti et al., 2010; Friesen et al., 2006; Kader et al.,
2021; Kamel et al., 2019; Kariyawasam et al., 2021;
Pandelova et al., 2012). Furthermore, Ptr populations
are the only ones that have been shown to have the
ability to develop up to three different types of muta-
tions (G143A, F129L and G137R) in the cytochrome b
gene, which are related to QoI fungicide resistance

(Sierotzki et al., 2007). Recently, FRAC reported that
in Europe (Denmark, Hungary, Latvia and Poland) a
high frequency of QoI-resistant Ptr strains has been
found, indicating that the G143A mutation is now pre-
dominant (FRAC, 2020). As this mutation confers ro-
bust QoI-resistance to individual Ptr isolates, unlike the
other two known ones, when the G143A allele frequen-
cy is high enough in a population, strobilurins become
ineffective at the field level. In Argentina, Sautua and
Carmona (2021) reported the G143A mutation for the
first time in South American Ptr strains collected during
2014, 2016 and 2018 in different locations of the main
wheat-producing areas of the Pampas region. The
in vitro, in vivo and molecular studies confirmed the
resistance in all the 82 isolates evaluated, determining
that the resistance of Ptr to QoI is wide spread ().

The development of newmolecules that can control
resistant strains is deserving a high priority in fungi-
cide companies. The process of developing and regis-
tering a new fungicide has changed significantly in
recent years. In addition to the initial investment need-
ed for the discovery and development, the costs to
meet the environmental protection requirements, pes-
ticide applicator safety and human health care have
increased considerably. According to McDougall
(2016), the current investment is around 250 to 300
million USD and the process can last on average more
than 10 years. When a new fungicide marketed, two
aspects are critical: 1) determining baseline fungicide
sensitivities of the pathogen, and 2) establishing ap-
propriate strategies to manage fungicide resistance, in
order to maximize its effective life. New fungicide a.i.
may have a previously known or a new mode of action
(MoA), or they may even be fungicides that, although
the MoA has already been reported, are applied to
crops on which they have never been used. Recently,
new molecules have been reported that, despite hav-
ing a previously known MoA, manage to control
strains resistant to this MoA. One example is the azole
mefentrifluconazole, which shows high efficacy
against demethylation inhibitor-resistant strains of
Zymoseptoria tritici (Zt) and performs better in the
field than other triazoles depending on the Zt field
populations structure, which was influenced by azoles
used previously in the area (Kiiker et al., 2021). An-
other example is metyltetraprole, a QoI that is capable
of controlling strains of various pathogens resistant to
strobilurins (e.g. G143A) (Matsuzaki et al., 2020,b;
Suemoto e t a l . , 2019) . Fenp icoxamid i s a
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picolinamide, a new class of fungicide chemistry
targeting the mitochondrial cytochrome bc1 complex
at the inner side of the mitochondrial membrane (Qi

site) (Young et al., 2018). This a.i. was derived from
an antibiotic (UK-2A) that was isolated from the fer-
mentation of the actynomycete Streptomyces sp. 517–
02, and has strong antifungal activity against a wide
range of fungal pathogens (Owen et al., 2017). Al-
though the MoA of quinone inside inhibitors (QiI) is
well known, until the arrival of fenpicoxamid only
two QiI fungicides specific to oomycetes (e.g.
Phytophthora infestans, Plasmopara viticola, etc.)
(Leadbeater, 2015) were marketed: amisulbrom and
cyazofamide (FRAC, 2014). For the first time, a new
QiI, fenpicoxamid, displays an anti-ascomycete activ-
ity, which makes it suitable to control major wheat
pathogens like Zt. This a.i. had never been previously
tested for Ptr control.

Most of the worldwide fungicide sensitivity studies of
wheat pathogens are conducted on Zt, causing Septoria
tritici blotch (STB) (Birr et al., 2021; Garnault et al.,
2021; Kiiker et al., 2021; Kildea et al., 2019). Some of
the reasons for this are that this disease is the main
problem in European wheat production and presents
great difficulties for its control (Fones & Gurr, 2015;
Torriani et al., 2015), in part due to the reports of Zt
fungicide resistance (Birr et al., 2021; Cheval et al., 2017;
Garnault et al., 2021; Hellin et al., 2021; Kiiker et al.,
2021; Kildea et al., 2019). In contrast, resistance and
sensitivity studies on Ptr are very scarce because TS is
usually epidemiologically more important in non-
European countries or regions. Contrary to what happens
in Europe, in Argentina TS is the most important foliar
disease of wheat alongwith stripe rust and leaf rust, while
STB does not present epidemiologically important levels
(Carmona et al., 2020; Sautua & Carmona, 2021). Ac-
cording to the information provided by FRAC (2021),
there is an intensive monitoring program of the Zt sensi-
tivity to fenpicoxamid, but there is no information related
to the sensitivity of Ptr to this new fungicide. The spe-
cialized literature does not offer any study that includes
Ptr as a target control through the use of fenpicoxamid.
Likewise, a second-generation picolinamide fungicide
inspired by UK-2A, florylpicoxamid, has recently been
evaluated mainly for Zt control (Meyer et al., 2021; Yao
et al., 2021). Given this lack of research for Ptr, and the
urgent need to obtain reference studies for a resistance
monitoring program in Ptr populations, the objective of
this study was to evaluate and estimate the baseline

sensitivity to fenpicoxamid of Argentine Ptr isolates
resistant to QoI.

Materials and methods

Collection, isolation, and in vitro sensitivity of Ptr
isolates to fenpicoxamid

From a collection of 82 single-spore Ptr isolates resis-
tant to QoI that was previously obtained in Argentina
(Sautua & Carmona, 2021), 50 isolates were randomly
selected and tested in vitro against fenpicoxamid. The
information of the isolates included in the present study
is shown in Supplementary Table 1.

In vitro experiments were conducted as previously
described by Sautua and Carmona (2021). Technical
grade fenpicoxamid (98.7% a.i.) was provided by
Corteva™ Inc. (Delaware, U.S.A.). The fungicide was
dissolved in acetone to make a stock solution of
100 mg/ml. Conidial germination was assessed on 2%
water agar amended with fenpicoxamid at 0, 0.01,
0.025, 0.05, 0.075, 0.1 and 1 μg/ml. Because bc1 com-
plex inhibitors can activate alternative oxidase (AOX) in
fungi belonging to the Ascomycetes and pseudofungi
(FRAC, 2014), the salicylhydroxamic acid (SHAM)
was included in the tests at 100 μg/ml (as previously
evaluated in Sautua & Carmona, 2021). The SHAM
(99% a.i.; Alfa Aesar) was dissolved in 99% methanol
to make a stock solution of 100mg/ml. The acetone and
methanol concentration did not exceed the non-toxic
concentration of 0.1% (as previously evaluated in
Sautua & Carmona, 2021). Each isolate was tested
in two replicates and 200 conidia were examined in
each 9 cm Petri dish to estimate the percentage of
germinating spores. The methodology used in the
spore germination inhibition assays is described in
detail in Sautua and Carmona (2021). The percentage
inhibition of conidial germination was estimated for
each isolate as previously described. The experiment
was repeated once (400 conidia evaluated in each run
and 800 conidia in total by isolate). The fungicide
50% effective concentration (EC50) at which conidial
germination of Ptr is reduced by 50% compared to the
nonamended water agar control, was estimated for
each isolate using a nonlinear regression analysis with
a log-logistic model, specifically a Weibull type I
four-parameter model, as previously described in
Sautua et al. (2020).
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In planta assay

Tan spot control by fenpicoxamid (98.7% a.i.) was
evaluated in a greenhouse bioassay. In vivo experiments
were conducted as previously described by Sautua and
Carmona (2021). Fenpicoxamid was applied at 0, 5, 10
and 20 μg/ml. A treatment with azoxystrobin (99.5%
a.i.; Nova SA) at 25 μg/ml was included. Fungicides
were applied preventively 24 h prior to inoculation. An
uninoculated control was sprayed with water and 0.2%
Tween 20. Wheat plants of the TS-susceptible variety
DM Algarrobo were grown in pots arranged in a
completely randomized design and for each treatment
twenty plants (five per pot) were sprayed to run-off.
After 24 h of treatment, plants were inoculated with a
mixture of conidia from the isolates ARG_2018_005,
ARG_2018_010, ARG_2018_018, ARG_2018_044,
ARG_2018_050, ARG_2018_051, ARG_2018_055,
ARG_2018_062, ARG_2018_070, ARG_2018_071,
ARG_2018_083 and ARG_2018_086, by spraying a
50 ml conidial suspension of approximately 3000 co-
nidia/ml. On the seventh day after inoculation, the plants
were evaluated for TS symptoms intensity: (a) foliar
incidence was estimated as the number of leaves with
at least one spot with a chlorotic halo of 2–3 mm with
respect to the total number of leaves, expressed as a
percentage (Reis et al., 2016); (b) average number of
spots per leaf was estimated in ten leaves taken at
random from each treatment, counting the spots with a
chlorotic halo greater than 2–3 mm and averaging the
total of spots by the number of leaves evaluated (Reis
et al., 2016). The experiment was repeated once. Data
were analyzed using One-way ANOVA with Tukey’s
HSD post hoc test.

Results

Fenpicoxamid strongly inhibited spore germination af-
ter 8 h incubation (Fig. 1). All 50 isolates tested were
sensitive to fenpicoxamid with EC50 values ranging
from 0.004 to 0.067 μg/ml (Fig. 2, Supplementary
Table 2). The average EC50 value of 0.033 μg/ml indi-
cates that this a.i. is fungitoxic against QoI-resistant Ptr
isolates carrying the G143A mutation in the
mitochondrially encoded cytochrome b gene. We con-
firmed the lack of cross-resistance of fenpicoxamid
against QoI-resistant Ptr isolates. The mean EC50 value
of the baseline Ptr isolates from the USA to

pyraclostrobin was 0.0017 mg/ml (Patel et al., 2012);
and the mean EC50 value of four QoI-sensitive and three
QoI-resistant Zt isolates to fenpicoxamid was
0.013 mg/ml and 0.0027, respectively (Young et al.,
2018).

In vivo, fenpicoxamid significantly reduced the foliar
incidence at 10 ppm (43.3% of TS control) and both the
foliar incidence and the average number of spots per leaf
at 20 ppm with 64.2% and 76.5% of TS control, respec-
tively (Table 1). Azoxystrobin did not decrease the
incidence nor the average number of spots per leaf with
respect to the control without fungicide application
(1.6% and 0% control, respectively).

Discussion

For the first time, we report on the fungitoxicity and lack
of cross-resistance of fenpicoxamid against QoI-
resistant Ptr isolates. Based on the in vitro and green-
house trials presented here, fenpicoxamid is a promising
new picolinamide a.i. for controlling TS of wheat. How-
ever, the fungicide dose and number of applications that
maximize effective field control of TS must be adjusted
and validated in field trials (Reis et al., 2015).

Accordingly, this new a.i. is potentially good to be
added to fungicide mixtures within anti-resistance man-
agement programs and can be a fundamental tool for the
control of Ptr populations resistant to QoI. Thus, includ-
ing fenpicoxamid in fungicide mixtures could reduce
the probability developing of resistance to existingMoA
such as demethylation inhibitors (DMIs) and succinate
dehydrogenase inhibitors (SDHIs). Among the possible
par tners , the fol lowing can be ment ioned:
prothioconazole, propiconazole and epoxiconazole,
which have shown fungitoxicity against Ptr in prelimi-
nary studies in our laboratory (unpublished data). More
research is required to determine the fungitoxicity of
both the existing SDHIs and those that will soon be
launched in the market, and of multisite fungicides.

Nevertheless, single-site fungicides such as Qils,
QoIs and SDHIs possess a high intrinsic risk to develop
resistance development, mainly due to the emergence of
spontaneous target-site resistance mutations in the phy-
topathogenic fungi (Hawkins & Fraaije, 2021). Fouché
et al. (2022) recently reported on a potential mutation
in the cytochrome b Qi site as the most likely resis-
tance mechanism towards fenpicoxamid in Zt. There-
fore, fenpicoxamid must be carefully used respecting
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appropriate anti-resistance management measures.
This is extremely important to prolong its effective
life (Corkley et al., 2022). Fungicide resistance man-
agement strategies mainly include the use of mixtures of

effective fungicides with different MoA with no cross-
resistance and not concerned by field resistance yet
when possible, alternation of MoA, correct timing of
applications according to disease development (as

Fig. 1 Descriptive photographs of inhibition of QoI-resistant
Pyrenophora tritici-repentis conidial germination at different con-
centrations of fenpicoxamid, taken with an optical microscope. A,

non-amended control; B, fenpicoxamid at 0.05 μg/ml; C,
fenpicoxamid at 0.075 μg/ml; D, fenpicoxamid at 0.1 μg/ml

Fig. 2 Frequency distribution of effective fenpicoxamid concentrations that inhibited conidial germination by 50% (EC50) for baseline QoI
resistant Pyrenophora tritici-repentis isolates. Individual isolates are grouped in class intervals of 0.01 μg/ml
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treating bigger infestations increases the risk of resis-
tance selection), limit to one application of picolinamide
per season and respecting full application dose accord-
ing to labels (Brent & Hollomon, 2007; Carmona et al.,
2018; Carmona et al., 2020; FRAC, 2019).

The potential benefit of determining the baseline
sensitivity of fenpicoxamid prior to market launch in
South America is of great value. This is particularly
important for pathogens such as Ptr that had become
resistant to the widely used QoIs. This will help improve
risk assessment, monitoring programs and administra-
tion of this new class of fungicide MoA after market
launch. The information generated here will serve as a
baseline sensitivity of Argentine Ptr populations to
fenpicoxamid and will help to monitor and identify
any shifts in sensitivity over time. Likewise, the EC50

values found in this work could be useful as reference
values for studies carried out in other wheat producing
regions or countries where TS is an important disease.
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